
Multiple Vehicle Routing
Problem with Broken Trucks
Nolan Slimp – Scrum Master

Joshua Heroldt - Client interaction lead

Indrajeet Aditya Roy - Frontend documentor

Bernard Fay – Meeting Scribe

Asma Gesalla - Backend documentor

Matt Medley - Team website manager

Siddharth Rana - Individual component design

Goce Trajcevski - Faculty Advisor

SDMAY22-32

Project Vision
● Aims to solve the multiple vehicle routing problem

○ Constrained by the condition that a vehicle breaks down mid route

○ Will contact different types of users upon a vehicle problem

● Aims to use temporal distribution of traffic parameters in order to get more realistic

estimates of route travel times

● Different UI’s for different types of users

● Dynamic routing done at both the onset of a route and when a breakdown occurs

● Algorithm will account for the loads of all trucks in the area of a broken down truck

Who does this project impact?
● General public health impact

○ Allows for more efficient transit for ambulances

○ Less of a risk for accidents with pedestrians

● Environmental impact

○ Emissions from a fleet of trucks will be drastically lessened

● Economic impact

○ Corporations will be able to maximize profits with their existing fleet without any other changes

Use case (Route reallocation sketch)
● 2 warehouses with 2

routes each

Use case (Route reallocation sketch)
● 2 warehouses with 2

routes each

● Pink truck breaks down

Use case (Route reallocation sketch)
● 2 warehouses with 2

routes each

● Pink truck breaks down

● Orange and Blue trucks

are allocated to pick up

and deliver remaining

load from Pink truck

Functional Requirements
● Functional requirements

○ Each truck stores:
■ Initial location

■ Delivery location

■ The current load

○ Algorithm requirements
■ Initial truck routing

■ Estimate truck location

■ Reassign trucks when breakdown occurs

○ UI Requirements
■ Desktop and mobile app

■ Display notifications

○ Constraints
■ Response time

■ Route allocation based on traffic parameters

Other Requirements
● Economic requirements

○ Minimize:

■ Delivery delay when a truck breaks down

■ Idle time of trucks

○ Maximize

■ The amount of goods delivered

● Resource requirements

○ A constantly running server (database, requests, algorithm)

○ Android mobile devices (trucker mobile app)

○ Visualization tools/frameworks (desktop and mobile)

Conceptual Design Diagram (High level)

Detailed Component Diagram

● A customer can place a new order

● The truck allocation service fetches

truck information and allocates the

truck

● Communication service establishes and

handles communication

● A customer can track their order via the

User order tracking component

● The requests will be handled by the

order tracking service,

Components and Modules
● Customer/dispatcher/driver interfaces

● DataBase (User, Truck and Order tables)

● API
○ Account service

○ order service

○ order tracking/update service

○ route allocation service

○ truck allocation service

○ communication service

● External API service

Research 1: Foundations

● MOLS significantly better in Solomon Benchmark
○ 56 instances, MOMA better in one

● MOMA outperforms MOLS more often in real life
○ 45 instances, MOLA better in 12

Wang, J., Zhou, Y., Wang, Y., Zhang, J., Chen, C. L., & Zheng, Z. (2016).
Multiobjective Vehicle Routing Problems With Simultaneous Delivery and
Pickup and Time Windows: Formulation, Instances, and Algorithms. IEEE
Transactions on Cybernetics, 46(3), 582-594.
doi:10.1109/tcyb.2015.2409837

Research 1: Foundations
● General

○ https://github.com/CUTR-at-USF/awesome-transit
■ Collection of everything related to transport and maps

● Visualization
○ https://docs.mapbox.com/api/maps/

● Algorithms
○ https://github.com/valhalla/valhalla

■ Routing engine
○ https://optimoroute.com/load-planning/

■ Load balancing
○ https://ieeexplore.ieee.org/document/7945429

■ Map matching
○ https://developers.google.com/optimization/routing/vrp

■ Google’s tools
○ https://github.com/dominictarr/dynamic-dijkstra

■ Dynamic shortest path algo

https://github.com/CUTR-at-USF/awesome-transit
https://docs.mapbox.com/api/maps/
https://github.com/valhalla/valhalla
https://optimoroute.com/load-planning/
https://ieeexplore.ieee.org/document/7945429
https://developers.google.com/optimization/routing/vrp
https://github.com/dominictarr/dynamic-dijkstra

Research 2: Technology and
Frameworks
● Frontend

○ Web App UI: React, selenium

○ Mobile UI: Android Studio, appium

● Mapbox

○ Enables our project to route vehicles in any city, taking into account closed roads and traffic density

○ Can use multiple vehicles with starting and ending locations

○ Endpoints for viewing map and routes in our web application

○ Also allows for geocoding of addresses that are entered into the UI from the customer

● Backend
○ Java Spring

○ Postman

○ JUnit

● Database
○ MySQL workbench

Prototype Implementation

https://docs.google.com/file/d/1m6l2lw-bLOy3yxWFd_J8Bgw6PPJerF1J/preview

Design Complexity
●Truck capacity constraint

○ Multiple trucks can reroute based on capacity

● Broken truck requirement

○ Vehicles are routed to deliver the goods from the broken truck

● Service to client - reliant on many modules

○ Increased complexity as communication travels through many components

Project Plan (Development)
● Main tasks that need to be accomplished:

○ Implement Visualization Tool Front-End
○ Develop UI for Web App
○ Develop UI for Mobile App
○ Develop REST API microservices
○ Setup application DB
○ Setup application server
○ Final Application Testing

● Metrics of interest:
○ Frontend response time
○ Algorithm update speed (time it takes to get a new route)
○ General algorithm efficiency (database queries, calls to the api, ect.)

Project Milestones

● Baseline functional UI

● Alpha UI (first round of user feedback)

● New prototypes will be developed in 2-to 3-week intervals.

● The first prototype finished by the end of week 5

● Polished UI
○ UI responds 100 ms

○ Visualization tool 98% accurate

● Algorithm updates in under 20 sec -> 1 sec

Test Plan
● Multiple types of tests will be run both in tandem with development

○ Unit testing
■ Backend testing: set of static inputs

■ UI testing: end user testing and automated tests

■ Database testing: list of important queries

○ Interface testing
■ Various scenarios to match use case

○ Integration testing
■ Customer order to assignment path will be followed

○ System testing
■ Combination of prior tests with sample set of data

○ Regression testing
■ Making sure the algorithm continues to work with test data

■ Compare response time and correctness against expected results

What’s next?
● Begin development in January

○ First goal: working truck allocation algorithm for initial allocation

● Create UI pages and experiment with React

○ Understand the tools we are working with better

● Verify existing solutions that will be used in the project

○ Using dynamic shortest path

Team Member Contribution

Nolan Slimp – Scrum Master

● Created Trello board and aided in shortest path algorithm research

Joshua Heroldt - Client interaction lead

● Created and spoke on lightnings talks and researched existing MVRP solutions

Indrajeet Aditya Roy - Frontend documentor

● Research implementation solutions and aided in software architecture designs. Created architecture diagrams.

Bernard Fay – Meeting Scribe

● Reviewed existing research solutions. Reviewed and submitted team documents.

Asma Gesalla - Backend documentor

● Worked on the weekley documents and spoke on the lighting talks.

Matt Medley - Team website manager

● Created prototype application and demonstration video

Siddharth Rana - Individual component design

● Spoke on the lightning talks and the youtube video

